typedef struct __attribute__((packed)) { uint rows; uint cols; char transposed; } cl_GPUMat; #define matrixAt(mat, mat_values, r, c) mat_values[(!mat.transposed ? r * mat.cols + c : c * mat.rows + r)] void mat_multiply(cl_GPUMat matA, __global float *matA_values, cl_GPUMat matB, __global float *matB_values, cl_GPUMat matOut, __global float *matOut_values) { uint idx = get_global_id(0); if(idx >= matOut.rows * matOut.cols) return; uint i = idx / matOut.cols; uint j = idx % matOut.cols; float sum = 0; for(unsigned int k = 0; k < matA.cols; k++) { sum += matrixAt(matA, matA_values, i, k) * matrixAt(matB, matB_values, k, j); } matrixAt(matOut, matOut_values, i, j) = sum; } void mat_add(cl_GPUMat matA, __global float *matA_values, cl_GPUMat matB, __global float *matB_values) { uint idx = get_global_id(0); if(idx >= matA.rows * matA.cols) return; matA_values[idx] += matB_values[idx]; } void mat_sigmoid(cl_GPUMat mat, __global float *mat_values) { uint idx = get_global_id(0); if(idx >= mat.rows * mat.cols) return; mat_values[idx] = 1 / (1 + exp(-mat_values[idx])); } __kernel void linear_forward(unsigned int batchSize, cl_GPUMat input, __global float *input_values, cl_GPUMat weights, __global float *weights_values, cl_GPUMat bias, __global float *bias_values, cl_GPUMat out, __global float *out_values) { // FIXME mat_multiply possibly doesn't index at idx when out is transposed, which is important to ensure it always accesses the same index for all operations! for(unsigned int b = 0; b < batchSize; b++) { __global float *batchInput_values = input_values + b * input.rows * input.cols; __global float *batchOut_values = out_values + b * out.rows * out.cols; mat_multiply(weights, weights_values, input, batchInput_values, out, batchOut_values); mat_add(out, batchOut_values, bias, bias_values); mat_sigmoid(out, batchOut_values); } }